Transcriptomic analysis of Ustilago maydis infecting Arabidopsis reveals important aspects of the fungus pathogenic mechanisms
نویسندگان
چکیده
Transcriptomic and biochemical analyses of the experimental pathosystem constituted by Ustilago maydis and Arabidopsis thaliana were performed. Haploid or diploid strains of U. maydis inoculated in A. thaliana plantlets grew on the surface and within the plant tissues in the form of mycelium, inducing chlorosis, anthocyanin formation, malformations, necrosis and adventitious roots development, but not teliospores. Symptoms were more severe in plants inoculated with the haploid strain which grew more vigorously than the diploid strain. RNA extracted at different times post-infection was used for hybridization of one-channel microarrays that were analyzed focusing on the fungal genes involved in the general pathogenic process, biogenesis of the fungal cell wall and the secretome. In total, 3,537 and 3,299 genes were differentially expressed in the haploid and diploid strains, respectively. Differentially expressed genes were related to different functional categories and many of them showed a similar regulation occurring in U. maydis infecting maize. Our data suggest that the haploid strain behaves as a necrotrophic pathogen, whereas the diploid behaves as a biotrophic pathogen. The results obtained are evidence of the usefulness of the U. maydis-A. thaliana pathosystem for the analysis of the pathogenic mechanisms of U. maydis.
منابع مشابه
Fungal Pathogenesis: Gene Clusters Unveiled as Secrets within the Ustilago maydis Code
The genome sequence of a second plant pathogenic fungus is now available, revealing unique gene clusters encoding secretory proteins that are induced during infection and regulate pathogenesis. Gene clusters play important roles in pathogenic fungi, yet their evolution and maintenance remain a mystery.
متن کاملPositively Selected Effector Genes and Their Contribution to Virulence in the Smut Fungus Sporisorium reilianum
Plants and fungi display a broad range of interactions in natural and agricultural ecosystems ranging from symbiosis to parasitism. These ecological interactions result in coevolution between genes belonging to different partners. A well-understood example is secreted fungal effector proteins and their host targets, which play an important role in pathogenic interactions. Biotrophic smut fungi ...
متن کاملInhibitory phosphorylation of a mitotic cyclin-dependent kinase regulates the morphogenesis, cell size and virulence of the smut fungus Ustilago maydis.
The regulation of cyclin-dependent kinase (CDK) activity through inhibitory phosphorylation seems to play an important role in the eukaryotic cell cycle. We have investigated the influence that inhibitory phosphorylation of the catalytic subunit of mitotic CDK has on cell growth and pathogenicity of the corn smut fungus Ustilago maydis. This model pathogen is worthy of attention since it is wel...
متن کاملUstilago maydis: Dissecting the Molecular Interface between Pathogen and Plant
Fungal diseases of plants represent one of the most eminent threats to agriculture. Given the food needs of a growing world population and that more and more crops are devoted to fuel production, the necessity to develop crops with better resistance to disease is increasing. To accomplish this, the mechanisms that plant pathogenic fungi use to colonize plants need to be elucidated. As of now, t...
متن کاملPhytohormone sensing in the biotrophic fungus Ustilago maydis – the dual role of the transcription factor Rss1
The phenolic compound salicylic acid (SA) is a key signalling molecule regulating local and systemic plant defense responses, mainly against biotrophs. Many microbial organisms, including pathogens, share the ability to degrade SA. However, the mechanism by which they perceive SA is unknown. Here we show that Ustilago maydis, the causal agent of corn smut disease, employs a so far uncharacteriz...
متن کامل